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A multiple-timescale analysis is employed to analyse Taylor-dispersion-like convective- 
diffusive processes in converging and diverging flows. A long-time asymptotic equation 
governing the cross-sectionally averaged solute probability density is derived. The 
form of this equation is shown to be dependent upon the number of spatial di- 
mensions characterizing the duct or ‘cone’. The two-dimensional case (non-parallel 
plates) is shown to be fundamentally different from that for three dimensions (circular 
cone) in that, in two dimensions, a Taylor dispersion description of the process is 
possible only for small Pklet numbers or angles of divergence. In contrast, in three 
dimensions, a Taylor dispersion description is always possible provided sufficient time 
has passed since the initial introduction of solute into the system. The convective 
Taylor dispersion coefficients Dc for the respective cases of low-Reynolds-number flow 
between non-parallel plates and in a circular cone are computed and their limiting 
values, q, for zero apex angle are shown to be consistent with the known results for 
Taylor dispersion between parallel plates and in a circular cylinder. When plotted 
in the non-dimensional form of nc/q versus the half-vertex angle 00, the respec- 
tive dispersivity results for the two cases hardly differ from one another, increasing 
monotonically from 1.0 for O0 = 0 to approximately 2.6 for a fully flared duct, 00 = 
n/2. Lastly, the techniques developed above for the case of rectilinear channel and 
duct boundaries are extended to the case of curvilinear boundaries, and an illustrative 
calculation performed for the case of axisymmetric flow in a flared Venturi tube. 

1. Introduction 
The problem of convective dispersion in ducts of constant cross-section, such as 

cylinders and parallel plates, has been well-studied. In those studies, the velocity 
profile and molecular dispersivity are taken to be independent of the axial (global) 
coordinate. In fact, application of the general theory of macrotransport processes in its 
current form (Brenner & Edwards 1993) explicitly requires that the phenomenological 
coefficients appearing in the microscale description of the process be independent of 
the global-space position. This is closely related to Taylor’s (1921) original observation 
that Taylor dispersion is applicable in circumstances where the axial velocity is a 
stationary random function of time. 

A limited number of studies exist which address problems involving axially vary- 
ing velocity fields. Thus, Frankel & Brenner (1991) studied Taylor dispersion in 
unbounded shear flows, allowing the velocity to depend linearly on the global coor- 
dinate. Mercer & Roberts (1990) used centre manifold theory to treat the case of 
dispersion in channels with slowly varying cross-section and thus, varying velocity. 



344 M .  D. Bryden and H .  Brenner 

Gill & Guceri (1971) conducted numerical studies of Taylor dispersion in flow be- 
tween non-parallel flat plates, in addition to having derived a theoretical expression 
for the axial dispersion coefficient in channels possessing small angles of divergence. 
Lastly, Smith (1983) derived a expression for the dispersion coefficient in a varying 
channel whose small depth relative to its width allowed it to be treated as well-mixed 
in the vertical direction. 

The method of multiple-timescales has been used to analyse Taylor dispersion in 
rectangular ducts (Pagitsas, Nadim & Brenner 1986). This method takes advantage of 
the separation of timescales required for a macrotransport description of the process 
to exist. The present contribution presents a multiple-timescale analysis of dispersion 
between non-parallel flat plates and in a circular cone. The functional dependence 
of the macrotransport equation upon the dimensionality of the channel is established 
and circumstances quantified whereby such a dispersion description of the process 
is indeed possible. The Taylor dispersion coefficients for low-Reynolds-number flow 
between non-parallel flat plates and in a circular cone are calculated. Finally, an 
extension of the current multiple-timescale methods to cross-sectionally varying flows 
in curvilinear channels and ducts is presented, and illustrated by example. 

2. Kinematics of flow in an n-dimensional cone 

apex angle 20, (see figures l a  and lb) is of the form 
The vector velocity field for axisymmetric radial flow in an n-dimensional cone of 

with 

Here, the inverse rn-l dependence results from the requirement that the axisymmetric 
flow field satisfy the continuity equation 

for incompressible radial flow. The algebraically-signed ‘volumetric’ flow rate through 
the duct, namely Q = Surds (with dS a scalar element of surface area on the surface 
r = constant) is given explicitly by the expression 

60 

Q = 27tn-’ Q( 0) sinn-’ Bd0. 

The exact solut_ion of the Navier-Stokes equations for incompressible Jeffrey-Hamel 
flow between non-parallel flat plates (n  = 2) is well known (Rouse 1959; Goldstein 
1965~) and can be expressed in terms of elliptic functions. For low-Reynolds-number 
flow this velocity field is 

While no comparable exact Navier-Stokes solution exists for flow in a circular cone 
(n  = 3) (Ackerberg 1965; Goldstein 1965b), the velocity field for low-Reynolds- 
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FIGURE 1. ( a )  Non-parallel plates; (b )  circular cone. 

number is (cf. Happel & Brenner 1983) 

cos' 0 - COS' 00 vr = - 3Q (n  = 3). 
2m-2 (1 + 2 cos 00)(  1 - cos 00)' 

3. Microscale transport equation for convection and molecular diffusion in 
a diverging or converging duct 

colloidal Brownian species between non-parallel plates or in a circular cone is 
The governing equation for unsteady convection and diffusion of a dissolved or 

aC Q ( 0 ) a C  - + -- 
d t  rn-1 dr 

with D the molecular diffusivity, assumed constant, and dn3 the Kronecker delta. This 
equation is to be solved for the solute concentration C ( r ,  0, (@), t )  subject to the initial 
and boundary conditions : 

Clt=O = co, (3.2) 

ac 
a0 
- = O  at 0 = O  and Oo, (3.3) 

C is finite at r = 0, (3.4) 

CI4 = Cl4+zX ( n  = 3). ( 3 . 5 )  
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(In the two-dimensional case, we have for simplicity by symmetry confined ourselves 
in the above to the half-region 0 < 0 d do.) The first of these conditions represents 
a prescribed initial solute concentration, with Co(r, 8, ( 4 ) )  a specified function. The 
second represents the condition of symmetry about the cone axis, together with the 
requirement of no flux through the duct walls. The remaining conditions (3.4) and 
(3.5) respectively represent the requirements of boundedness of the concentration field 
and single-valuedness of the latter in the azimuthal angle 4. 

As the velocity field and molecular diffusion coefficient are both independent of the 
angle 4, this angle constitutes a ‘dead’ degree of freedom over which one can integrate 
in the n = 3 case. (Of course, in the n = 2 case no such integration is required.) To 
ultimately establish the macrotransport equation (see (5.1)), we therefore need solve 
only for the azimuthally averaged concentration field : 

C(r,O,+,t)d4 ( n  = 3). 

Upon introduction of the dimensionless quantities 

(3.74 b, c) 

where ro is a characteristic radial distance, (3.1)-( 3.5) become 

1 a - 
R2 sinn-2(0do) ( 

cI,=o = co, (3.9) 

(3.10) 

c is finite at R = 0, (3.11) 

ac 
ao ~ at 0 = O  and 1, 

in which co is the prescribed value of c at z =O, 

and 
2 .=(%). 

(3.12) 

(3.13) 

(3.14) 

In the above, Q = J Q(O)dS/ J dS is the algebraically signed average ‘volumetric’ flow 
rate, explicitly defined as 

60 [ sinn-2 Ode. 
- 
Q = 1 Q(0) ddB 

0 
(3.15) 

The dimensionless parameter J E I  is proportional to the ratio of the angular diffusion 
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time ZD to the convection time ZQ from r = 0 to ro, respectively defined as 

(3.16a,b) 

4. Mu1 tiple- timescale analysis 
Equation (3.8) may be recast in terms of the comparable Green's function (Brenner 

& Edwards 1993), the latter being formally equivalent to the conditional probability 
density P(R, 0, zlR', 0') that a unit tracer introduced into the system at position 
(R', 0') at time z = 0 is present at the position (R,  19) at time z: 

This equation is to be solved subject to the boundary conditions 

aP 
a 0  ~ = O  at 0 = O  and 1, (4.2) 

P is finite at R = 0, (4.3) 

Rn-'P -+ 0 as R -+ co. (4.4) 
In the long-time limit and for I E J  << 1, the above system of microscale equations may 

be reduced to a comparable macroscale equation for the cross-sectionally averaged 
probability density, defined as 

1 / 1' ~in"-~(@Bo)dO, (4.5) 
- 
P = 1 P sinn-2(0S0)d0 

through the use of a multiple-timescale analysis in which E is a small parameter. 
(The physical implications of the requirement that E be small are discussed in 96.) 
To accomplish this macrotransport analysis, introduce into (4.1) the sequence of time 
variables 

z, = ErnZ (rn = 0,1,2, ..., oo), (4.6) 

(4.7) 

each of which is to be treated as an independent variable, and write 

P(R, O,zlR', 0') E P(R, @ , Z O , Z ~ , Z ~  ,... IR',@'). 

Expand P in a perturbation series in E :  

The time derivative 

Substitute (4.8) and 

oci 

P = C~"P, (R,O, to , t l , t2  ,... IR',@'). (4.8) 
n=O 

appearing on the left-hand side of (4.1) may then be written as 

(4.9) 

(4.9) into (4.1) and equate terms of equal order in E to obtain the 
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and 

K a  
Rn-' dR (R"-'$) =0, (4.12) 

up to and including terms of second order in E. Each such equation is to be solved 
subject to the same boundary conditions set forth for P in (4.2)-(4.4). 

Multiply (4.10) by sin"-2(000), integrate from 0 = 0 to 0 = 1 and apply the 
boundary condition (4.2) to obtain 

Thus, for long times (to >> l) ,  
- 

PO - POW, T I ,  ~ 2 ,  ... IR') + exp, 

(4.13) 

(4.14) 

in which 'exp' denotes terms which decay exponentially in TO. 

Substitution of (4.14) into (4.11) furnishes an asymptotic equation governing P1 for 
long times. Multiply (4.11) by sin"-2(000), integrate from 0 = 0 to 1, and apply the 
boundary condition (4.2) to derive the asymptotic relation 

- exp. -+-+-- a& Po 1 aFo 
aTo  aTl ~ n - 1  aR 

(4.15) 

The second and third terms in the above equation are independent of TO. Thus, in 
order to prevent secular growth of Fi in ZO, it is required that 

1 aFo - arja - _-__-  
871 Rn-l dR' 

whence 
- 
P1 - exp. 

(4.16) 

(4.17) 

(This secular growth argument is equivalent to that used by Chatwin (1970).) Substi- 
tute (4.14), (4.16), and (4.17) into (4.11) to obtain 

The above may be solved subject to the boundary and normalization conditions (4.2) 
and (4.17), yielding 

(4.19) 
a 7  P1 - f ( 0 ) R 3 - " L  aR +exPy 
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where the function f (0 ) represents the solution of the boundary value problem 

subject to the conditions 

at 0 = O  and 1, a f  
a 0  

1' f(0)sinfl-2(060)d0 = O .  

(4.20) 

(4.21) 

(4.22) 

It remains only to find the terms of O ( 2 ) .  By substituting the respective solutions 
(4.14) and (4.19) for PO and P1 into (4.12) and integrating over the cross-sectional 
area, the dependence of 70 upon z2 may be obtained: 

Here, 
1 

- F(60)  = 1 f ( o ) q ( O ) ~ i n " - ~ ( 0 8 o ) d 0  / 1' sin"-2(060)d0, (4.24) 

or in an alternative form which may be derived through use of (4.20)-(4.22) in the 
above, 

F ( 8 0 )  = 1' ($ ) sin"-2 (0 & ) d 0  / 1' 0 QO)dO. (4.25) 

Prevention of the secular growth of F2 in TO requires that 

and 
- 
Pz - exp. (4.27) 

5. The macrotransport equation 
The macrotransport equation governing F (accurate to 0 ( e 2 ) )  may be found by 

integrating (4.9) over the cross-sectional area and substituting (4.14), (4.16), (4.17), 
(4.26), and (4.27) into the resulting expression to obtain (in dimensional form) 

J o  

wherein 
(5.1) 

-1 

- D, = -8 f2- ; F (6) (5.2) D 
represents the convective contribution to the dispersivity. This equation is valid for 
both positive (diverging flow) and negative (converging flow) values of Q. Note that 
inasmuch as F(60)  is always non-negative (see (4.25)) it follows that Dc is always 
non-negative irrespective of the direction of flow. 
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6. Range of validity of the global equation 
The present analysis is valid provided that I E ~  << 1 and zo >> 1 (or equivalently 

t >> 6;r; /D) .  It can be shown that the first requirement is automatically satisfied 
provided that the second constraint is met. A tracer particle initially introduced into 
a diverging or converging flow at the radial position r’ will (on average) be located 
at time t at the point 

(6.1) 
(For converging flows, for which < 0, the above is valid for t < (r’)’’/n@l, after 
which time the solute particle will, on average, have flowed out of the cone through 
the apex along with the solvent.) Substitution into (6.1) of the inequality 

M .  D .  Bryden and H .  Brenner 

rt = [nQt + ( r ’ ) n ] ( l / n ) .  

@r,Z 
D t >> - 

followed by subsequent rearrangement gives 

n6;Qr; 
D[r:  - (r’)fl] 

<< 1. (6.3) 

The characteristic length ro is to be chosen as the larger of the two lengths r,  and r’. 
Thus, for diverging flows (Q > 0) ro = rt ,  while for converging flows (Q < 0) ro = r’. 
After replacement of ro in (3.13) and (6.3) with the appropriate length, comparison 
of the two constraints reveals that the requirement (6.2) is more restrictive than the 
requirement J E ~  << 1. Thus, satisfaction of a single constraint suffices to guarantee 
that the macrotransport description (5.1) of the process is applicable. 

Observe that E ,  the ratio of the transverse diffusion time to the convection time, 
scales as r;n+2 (3.13). Hence, in three dimensions a macrotransport description of 
the process is always possible for some sufficiently large ro or, equivalently, for long 
enough times. For the two-dimensional case, the situation is different. In this case, E is 
independent of ro. Thus, circumstances exist for which no macrotransport description 
is possible, regardless of the lengthscale of the channel. Physically, this means that 
in some instances the transverse diffusion time T~ is greater than or equal to the 
convection time ZQ. In such cases, corresponding to large flow rates or apex angles, 
a particle introduced into a diverging flow will be swept downstream so quickly that 
insufficient time exists for it to sample all angular positions. This is so because as the 
particle is convected downstream, the transverse distance through which it must travel 
in order to reach the most distant streamlines increases more rapidly than (Dt)’/2, 
the lateral distance through which it has diffused. It may appear that this limitation 
would not be present for the case of converging flow, for which the particle encounters 
a decreasing cross-sectional area as it is convected toward the apex of the system. 
This impression is erroneous, however, for although the particle is confronted with a 
smaller area to sample, its velocity increases at precisely the same rate at which the 
cross-sectional area decreases, so that the particle still has insufficient time in which to 
sample all of the streamlines. In such circumstances, a purely asymptotic description 
of the process cannot be valid since the particle will ‘remember’ the angular position 
6’ at which it was originally introduced. 

In contrast, in three dimensions, a macrotransport description is always possible 
for some sufficiently large ro. Although the transverse distance that a particle in 
a diverging flow must sample increases as it is convected through the cone, the 
velocity with which it is convected decreases rapidly enough that the particle can 
sample all of the streamlines if given enough time. Likewise, in converging flow, the 
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1.8 
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Non-parallel plates (n=2) 

Circular cone ( n = 3 )  
0.6 1 
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FIGURE 2. Convective contribution, D,,  to the dispersion coefficient for axisymmetric 
low-Reynolds-number flow between non-parallel plates or in a circular cone. Observe that for 
the limiting case where Oo = n/2, the dispersivity ratio quantified by the ordinate attains the 
limiting values of 105/4n2 ( n  = 2) and 128/5n2 ( n  = 3). 

velocity increases more slowly than the cross-sectional area decreases, thus enabling 
the particle to sample all of the streamlines. 

7. Examples: low-Reynolds-number flow 
7.1. Non-parallel plates 

Application of (4.20)-(4.22) together with (4.25) and (5.2) to the case of creeping flow 
between non-parallel plates, for which the velocity is given by (2.5), gives 

-2 
- Q 1 68; - 6 sin2 200 + 980 sin 2oo cos 200 + 48; sin2 280 

D 12 (7.1) 

It may be shown in the limit oo -+ 0 that this reduces to the classical result for 
Taylor dispersion between flat plates. To do so, replace the flow rate with the average 
velocity, V = Q / r ,  introduce the half-distance, h Oar, between the plates, and 
expand in a Taylor series about 80 = 0 to obtain 

D - _ _  
(sin 280 - 2O0 cos 280)2 c -  

- def - 

where 
-o 2 p h '  
D =-- ( n  = 2) 

105 D 

(7.2) 

(7.3) 

is the classical result (Wooding 1960) for flow between parallel plates. 
A plot of the convective contribution (7.1) to the dispersivity versus the half-angle 

between the flat plates is given in figure 2. The dispersivity increases appreciably 
with increasing angles owing to the fact that the transverse velocity gradients dv,/cW 
increase with increasing angles of divergence. 

For this two-dimensional situation, the macrotransport equation governing the 
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angularly averaged conditional probability density F( r ,  tlr') is 
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- 8F Q8F ",'2", ( ::) 6 ( r - r ' )  
at r 87 r d ( t ) ,  -+  _ _ _ _ _  r -  - - (7.4) 

in which 
- 

D* = D +Dc (7.5) 
is the total Taylor-Aris dispersivity. The solution of (7.4) may be found through use 
of Laplace transforms to be 

in which 
- 

* Q  Pe = =  
D' (7.7) 

is the effective P6clet number and I ,  is the modified Bessel function of order u . 
Note that the two-dimensional case is unique in that the macrotransport equation 

(5.1) assumes the same functional form as the symmetric, purely radial form of the 
microscale equation (4.1). In contrast the three-dimensional macroscale equation 
possesses a different structure than the original microscale equation in regard to the 
final term appearing on the left-hand side of (5.1). 

7.2. Circular cone 
Solution of (4.20)-(4.22) for low-Reynolds-number flow in a circular cone, for which 
the velocity is given by (2.6), followed by subsequent use of (4.25) and (5.2) yields 
(see figure 2): 

in which c0 = cos6'0. As in the two-dimensional case, replacement of the flow rate 
with the average velocity I/ = Q / r  , introduction of the 'radius' h '?C? 80r at any point 
in the cone, and expansion of the above in a Taylor series about 80 = 0 demonstrates 
that in the limit 0, + 0, the dispersion coefficient reduces to the classical result for 
Taylor dispersion in a circular cylinder (Taylor 1953; Aris 1956): 

-def - 2 

where 

( n  = 3). 
1 P h 2  p=-- 

48 D 
(7.10) 

The macroscale equation in three dimensions is 
- - 

D, a2F 6 ( r  -Y') s ( t )  
-+  aP - - _ _ _  Q ~ F  p2;r ( r2- a F )  - . (7.11) 

- In this case, in contrast with the two-dimensional case (7.4), the convective dispersivity 
D, contributes to the net transport differently than does the molecular diffusivity D ,  
as can be seen by comparing the final two terms on the left-hand side of the above. 

at rz ar r2 ar2 r2 1 - cos do 
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8. Discussion 
8.1. Solute conservation 

Although our analysis is valid for both converging and diverging flows, the semi- 
infinite configuration of the conical domain, coupled with the singularity of the 
velocity field at the apex r = 0, leads to fundamental differences in the temporal 
behaviour of the probability densities for the respective cases of Q > 0 and Q < 0, 
all other things being equal. In particular, the total probability of a solute particle 
being located within the cone is conserved for diverging flow, but not for converging 
flow; rather, in the latter case there is a continuous loss of solute through the apex. 
Mathematically, this behaviour may be seen by integrating the microscale equation 
(4.1) over the infinite domain V, of the cone and applying the boundary conditions 
(4.2)-(4.4) to obtain (in dimensional form) 

where dV = dSdr SE rfl-’ edrdO(d4) is a ‘volume’ element. For Q = 0, the total 
amount of solute initially present in the cone is conserved for all time, as in the known 
results (Carslaw & Jaeger 1959) for pure diffusion in a wedge and in a circular cone. 
However, examination of the solution (7.6) of the macrotransport equation for n = 2 
reveals that for Q > 0, PI,=o = 0 for all times t > 0. Hence, for diverging flow, the 
particle is always contained within the cone. The explanation for this phenomenon 
lies in the functional form of the velocity field, which varies inversely with radial 
position. A solute particle is never able to diffuse backwards to the apex of the cone 
because its diffusion is opposed by an infinite velocity in the positive direction. In 
contrast, for Q < 0, 7 assumes a finite positive value at the origin, namely 

Thus, solute exits the cone at its apex, eventually becoming entirely depleted. 

8.2. Asymptotic behaviour of the microscale $eld 
Not only does our analysis result in an asymptotic equation for the macroscale prob- 
ability density p, but concomitantly it also furnishes an asymptotic approximation to 
the exact microscale probability density P .  In particular, in combination, (4.8), (4.14) 
and (4.19) yield 

This asymptotic expression is similar in appearance to the first two terms occurring 
in the expansion of Taylor (1954) (subsequently expanded by Gill 1967), with the 
exception of the presence of the coefficient r3-fl occurring in the second term on the 
right-hand side of the above, which arises from the varying cross-sectional area of 
the duct. 

8.3. Dispersion in curidinear, cross-sectionally varying channels and ducts 
The methods described herein may be utilized to analyse dispersion in generally 
varying channels and ducts whose boundaries are curvilinear rather than rectilinear. 
We use general orthogonal curvilinear coordinates (Happel & Brenner 1983) ( q l , q 2 ,  q3) 
and consider ‘unidirectional’ flows whose streamlines lie along the q1 coordinate 
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curves. Flow through a hyperbolic cone or 'Venturi' tube (Happel & Brenner 1983, 
p. 150) as in figure 3 constitutes an example of this class. We will confine ourselves 
to the three-dimensional, duct-flow case, although the analysis is easily extended to 
two-dimensional, channel flows. The surface of the duct will be taken to be defined by 
the functional relation F(q2,  q3) = const. The continuity equation in such a coordinate 
system is 

( 8.4) 
a 
i7ql(&) = O ,  

in which the scalar ul(ql, q2, q3) is the speed hi(ql, q2, q3) and is the metrical coefficient 
in the qi direction. The velocity field is thus of the form 

u1 = h2h3dq23 q3)* (8.5) 

In this notation, the convection-diffusion equation governing the conditional proba- 
bility density P ( ~ I ,  q2,43, t I4 ,qL 4;) is 

We now follow a procedure similar to that used in our previous analysis. It is again 
required that the convection time be much larger than the transverse diffusion time. 
The ratio of these times is given by JE~,  where 

Here, the brackets 1 1  ...I1 denote an appropriate norm of the quantity they bound; q 2  is 
the coordinate corresponding to the largest of the two transverse directions, and the 
constant G is related to the volumetric flow rate Q through the duct (both and Q 
being independent of the 'axial' distance 41) as follows: 

where 

Q = d 4 2 ,  q3 )dq2dq3. (8.9) I ,  
Here, S1 denotes the 'cross-sectional' domain corresponding to the surface defined by 
41 = const. and bounded by the curvilinear duct wall, F(q*,q3) = const. 

Upon performing a multiple-timescale analysis similar to that for the circular cone, 
- the macrotransport equation governing the macroscale conditional probability density 
P(q1, tlq;) is ultimately found to be 

in which 

(8.11) 



Taylor dispersion in conuerging and diverging flows 355 

Asymptote to 
f hyperbola 

FIGURE 3.  Hyperboloid of revolution (‘Venturi’ tube). The coordinate system is q1 = <, q2 = q,  
q3 = 4, with S, the domain 0 < q < qo, 0 < 4 < 27t. The duct throat, corresponding to the value 
5 = 0, is of radius c. The duct centreline corresponds to the value q = 0 and the unit normal vector 
n to the duct surface qo is the unit vector i, in oblate spherical coordinates. The major and minor 
axes Ao and Bo of the hyperboloid qo are respectively as shown in the sketch, with = tan q o ;  
thus, the angle between the z-axis and the dashed asymptote corresponds physically to the angle qo. 

and 

(8.12) 

where dA1 = dq2dq3/h2h3 is a differential areal element on the surface ql = const. 
The convective contribution to the dispersion required in (8.10) is given by 

(8.13) 

with 
u = v. d 4 2 ,  q 3  1 (8.14) 

The function g(ql, q2, q 3 )  appearing above represents the solution of the following 
boundary value problem : 

Q 

n - V g  = 0 on F(q2,q3) = const., (8.16) 

g$ = 0. (8.17) 

In the above, n represents the unit vector normal to the surface of the duct. Use 
of (8.15)-(8.17) in (8.13) allows 0, to be written in an alternative form which 
demonstrates that the dispersivity is non-negative: 

(8.18) 

The ‘average’ probability density function appearing in the macrotransport equation 
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(8.10) is defined as 
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(8.19) 

In our prior discussion of dispersion in a cone and between non-parallel plates, the 
average utilized was an urea average. The above average is equal to the volume 
average taken over an infinitesimal volume centred at a given ‘axial’ position q1 

(8.20) 

where dV = dqldq?dq3/hlh2h3 is a differential volume element. The quantity defined 
in (8.20) is identically equal to the area average in the conical geometry considered 
previously, since in that case hl is independent of 42 and q3. 

The physical form of (8.10) becomes especially transparent in circumstances where 
the metrical coefficient hl is, at most, a function only of q l ,  and hence independent of 
q 2  and q3 .  Since the quantity dql/hl = dll, say, is the arc length, measured along the 
ql-coordinate curve (Happel & Brenner 1983), it follows that when hl is of the form 
h(ql )  = hl ( l l ) ,  the quantity dll is then an exact differential. Consequently, the arc 
length l1 possesses a global physical interpretation. In such circumstances, (8.11) and 
(8.12) become 2 = Al /h l  and x = hlA1, where Al(q l )  = A I ( l I )  is the ‘cross-sectional’ 
area of the duct corresponding to the domain S1. Moreover, the ‘volume average’ 
probability density defined by (8.19) becomes identical with the (curvilinear) area- 
average probability density Js, PdAl /Al. In these circumstances, the macrotransport 
equation (8.10) governing P = PO1, tlZi) adopts the form 

in which 
(8.22) 

An example of a configuration for which hl is independent of 42 and q 3  occurs 
for the circular cone case, where (Happel & Brenner 1983, p. 504) with the choice 
(ql ,  42, q 3 )  = ( r ,  8,4),  we have that 

hl = 1, hz = l /r ,  h3 = l / r  sin 8, (8.23) 

and hence l1 = r ,  Al  = x = 2n(l - cos80)r2. In this case (8.21) reproduces (7.11). 

8.3.1. Dispersion in a pared, ‘Venturi’ tube 
As an application of the general curvilinear analysis embodied in (8.10), consider 

the problem of convection and diffusion in a ‘Venturi’ tube (i.e. a hyperboloid of 
revolution of one sheet, as in figure 3) .  Such a flow may be described in oblate 
spheroidal coordinates (-a < 5 < m, 0 < 4 < 2n), in which the 
hyperboloidal surface of the tube is q = yo. (This coordinate system is identical to 
that appearing in Happel & Brenner (1983, p. 512) with the exception of the ranges 
of y and 5.) These coordinates are related to circular cylindrical coordinates (z,R,$), 
having their origin 0 at the centre of the tube throat, by the relations 

(8.24a,b) 

The coordinate surfaces 5 = const. and 4 = const. are respectively oblate spheroids 
and meridian planes, the latter containing the z-axis. 

0 < q < n/2, 

z = csinh 5 cosq, R = ccosh (5: sin y. 
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The axisymmetric stream function for the low-Reynolds-number flow through the 
tube is (Happel & Brenner 1983; Sampson 1891) 

(8.25) 

in which ( = cosq and io = cosqo denotes the surface of the duct, so that the 
streamlines are hyperbolas, lying on the coordinate surfaces q = const. in a meridian 
plane ( 4  = const). In contrast to the previous cases of flow in a circular cone or 
between non-parallel plates, in the present geometry the flow contains both ‘diverging’ 
and ‘converging’ regions and no singularity exists at the origin. 

In this oblate spheroidal coordinate system, the quantities necessary for determina- 
tion of the macroscale equation are 

1 
c(cosh2 < - s i n ’ ~ ) l / ~ ’  

hi = h2 = 

1 
c cosh l sin q 

h3 = 

and 

(8.26) 

(8.27) 

(8.28) 

The condition which must be met in order for the present multiple-timescale analysis 
to apply is again I E ~  << 1, with 

in which < O  is a characteristic value? of the ‘axial’ coordinate <, and 

(8.29) 

(8.30) 

Solution of (8.15) subject to (8.16) and (8.17) yields 

. (8.31) 3% (1 - ()(( - l o ) ( (  + (0 + l)(cosh2 < + lo’ - 1 )  -- - dg(% 0 
dy c cosh < sin q (1 + 2c0)( 1 - i0)’(3 cosh’ 5 + (,’ + (0 - 2) 

The resulting macroscale equation is then of the form (8.10) with 
- 

A ( < )  = C3Co43A2 + Cl), (8.32) 

X(<) = 3CCok (8.33) 

(8.34) 

in which A = cosh 5, and the constants Ci are functions only of qo as follows: 

co = (+(I - i o ) ,  

c1 = (; + (0 - 2, 

(8.35) 

(8.36) 

t For long axial distances from the tube throat, the distance r = ( R 2  + z2)lI2 from the origin 
approximates r FZ c cosh <, while the transverse distance approximates h = cqo cosh <. The parameter 
E is thus proportional to the ratio of the transvefse diffusion time zD to the axial convection time 
TQ, respectively defined as t~ = h 2 / D ,  TQ = r 3 / Q .  
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cz = [,' - 1, (8.37) 

The above Venturi tube results may be compared with the circular cone results; 
(7.8)-(7.11), as follows. Referring to figure 3, it is seen that at large distances -+ a3 
along the axis, the hyperboloidal duct surface is isomorphic with the surface of the 
circular cone of half-angle 80 E qo in figure l(b). From (8.24a,b), we find that the 
distance r = (Rz+z2)h from the origin 0 is r = c(cosh'5-cos2q)t, which for 141 -+ GO 

asymptotes to r - c cosh 5. Additionally, from (8.26), we see that, asymptotically 
hl - (ccosh <)-I,  which is independent of q and 4, and thus asymptotically fulfils the 
requirement set forth in the paragraph following (8.20). Use of the above asymptotic 
relation for hl and the dispersivity (8.34) in (8.22) reveals that in this limit, is 
independent of the axial position 11 - r (11 being calculated from its definition, 
dll = d(/hl), and may therefore be brought to the outside of the derivative in which 
it appears in the macrotransport equation (8.21). The ratio q / A l  then reduces to the 
form 

(8.39) 

which may be shown, through use of the respective (albeit slightly different) defini- 
tions (8.27) and (3.15) for Q in the hyperboloidal and conical cases, to be exactly 
equal to the dispersivity (7.8) in the case of a circular cone, bearing in mind that 
80 E qo. Straightforward calculation shows that the other terms appearing in the 
macrotransport equation (8.21) are also identical to their counterparts in the circular 
cone case, (7.11). 

Finally, we note that the case of flow through a circular aperture in a wall occurs 
when q0 = n/2 (C0 = 0). 
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